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MONTE CARLO, FINITE ELEMENT AND Sy METHODS*
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This paper surveys the present capabilities and
limitations of Sy, Monte Carlo, and finite element
transport computational methods. Outstanding problems
remaining in these computational methods are discussed.
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INTRODUCTION

The neutron transport computational methods in use today
seem to fall naturally into five different classes. Collision
probability and transfer matrix methods, which are treated in
Leonard's paper (1), constitute two of these classes. Methods
in these two categories tend to be very efficient precisely be-
cause, in practice, they involve very substantial approximations.
In contrast, the Monte Carlo and discrete ordinates methods, and
methods based on polynomial expansions, are generally much less
efficient (and more expensive), but also more accurate. It is
these more or less exact methods which will be discussed here.

DETERMINISTIC METHODS

The earliest, and perhaps the simplest, polynomial expan-
sion method is, of course, the spherical harmonics method. Both
the spherical harmonics method and the discrete ordinates method
were applied, first, to the slab transport equation and, in slab
geometry, these two methods are very closely related. It is
only when we deal with more complicated geometries that the dis-
crete ordinate and spherical harmonics methods acquire totally
different properties, both from a theoretical and a practical
point of view.

There is at least one very important and very striking dif-
ference between the discrete ordinate and spherical harmonics
equations, a difference in their fundamental properties. The
discrete ordinate equations, in effect, constrain the neutrons to
move in straight lines, while the spherical harmonics equations
do not. This distortion of neutron trajectories in the spherical
harmonics method gives rise to some peculiar anomalies and has
important consequences.

Imagine, for example, an absorbing sphere of radius R (which
will be called '"Region I'), embedded in an infinite absorbing
medium, a medium in which the scattering cross section is zero.
There is a uniform isotropic source in the sphere, but the sur-
rounding region (Region II) is source-free. Suppose we wish to
compute the net leakage rate out of the sphere. It is clear on
physical grounds that the leakage rate should not depend on the
Region II cross section but, in a spherical harmonics approxima-
tion of any order, it does. Further, in diffusion theory, we
find that the flux in both regions becomes flat, and the leakage
rate goes to zero, as I,yy goes to zero. When the product I,[;R
is small, while I, 1R is large, the diffusion approximation
grossly underestimates the leakage rate. In the complementary
problem, where the source is in Region II and Region I is source-
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free then, again when Ia1iR << 1 and I ;R >> 1, diffusion theory
grossly underestimates the absorption rate in Region I.

Of course this particular problem configuration is not one
which will be met in practice very often but, unfortunately,
related anomalies do crop up in practical problems. It is some-
times necessary, in reactor analysis, to compute the leakage in-
to a small absorbing lump. If such a lump, with a large macro-
scopic cross section, is embedded in a material having a much
lower cross-section diffusion theory may grossly underestimate
the absorption rate in the lump. Further, if the lump is small
enough, the sequence of Py approximations will converge only
very slowly to the true absorption rate.

Another well-known weakness of the spherical harmonics
methods is their inability to treat streaming in voids. Unless
the diffusion coefficient is artificially adjusted the diffusion
approximation completely falls apart in voids and, again, the
sequence of P approximations converges very slowly in such cases.

In certain situations the P; equations can be approximated
very accurately by a simple set of coupled diffusion equations
(2,3), and in such situations they are easy to solve. On the
other hand, in their exact form, the multidimensional P equa-
tions become rapidly more complicated as L increases. Computa-
tional algorithms for solving the P equations tend, therefore,
to be complicated, inefficient, and not completely reliable.

Given all the disadvantages of the spherical harmonics
method it is not surprising that most of its early supporters
and advocates abandoned it some time ago. Until recently the
spherical harmonics had been used only rarely in more than one
dimension.

But obviously the discrete ordinates method also has weak-
nesses and, as the use of discrete ordinates codes has become
more widespread, these weaknesses have attracted a good deal of
attention. Probably the most famous affliction of the discrete
ordinates method is the ray effect (4). If an isotropic line
source is inserted into an infinite, purely absorbing medium,
the scalar flux produced by this source should certainly have
azimuthal symmetry. But in a discrete ordinates approximation
the neutrons can move only along rays which lie along the ordi-
nates. In the x-y plane then, the scalar flux will be infinite
along the x-y projections of each ordinate, and zero elsewhere.
Of course in a medium with scattering the flux will be positive
everywhere, but noticeable spurious bumps in the flux may remain.
There is no such effect in the spherical harmonics method, which
has very nice symmetry properties. The spherical harmonics equa-
tions are invariant under all rotations of the coordinate axis,
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while the discrete ordinates equations are not. After being
harassed by ray effects for many years, practitioners of the dis-
crete ordinates method started looking covetously at the spheri-
cal harmonics method, even while many disillusioned spherical
harmonics specialists were reluctantly switching their allegiance
to the Sy method.

It was Lathrop (4,5) who first showed that discrete ordinate
codes, slightly modified, could be used to solve "spherical-
harmonics-like' equations. Following a suggestion by Carlson,
Lathrop added a fictitious source to the Sy equations, a source
which was a linear combination of spatial derivatives of the
angular fluxes. This source was so defined as to guarantee that
a limited number of flux moments would satisfy spherical har-
monics equations of some order, L. Lathrop's method required, in
principle, that L < N - 3, where N is the order of the Sy approxi-
mation. In practice, it turned out that Lathrop often obtained
anomalous results for L > N/2.

It is clear that Lathrop's modified Sy equations are not
exactly equivalent to the sphrical harmonics equations since, for
a given problem configuration and a given L, his computed scalar
fluxes vary with N. Why this should be true, however, seems not
at all clear at this time.

Reed (6) points out that: "In x-y geometry standard SN quad-
rature sets involve the use of 1/2[N(N + 2)] quadrature points or
directions, giving 1/2[N(N + 2)] unknown functions to be deter-
mined. In this same geometry a P solution will involve
1/2[(L + 1)(L + 2)] unknown functions." Thus, in Lathrop's
method, the number of Sy ordinates is much greater than the num-
ber of unknown functions in the '"equivalent' spherical harmonics
approximations. An alternate method proposed by Reed is somewhat
more economical in that the Sy equations are made 'equivalent'
to the Py equations with L = N - 1. Reed's method also involves
a fictitilous source (again a linear combination of derivatives of
the angular fluxes) but a source which is somewhat different from
Lathrop's. Reed notes that, if one is willing to adopt unsym-
metric Sy quadrature sets, then it is possible to define the fic-
titious source in such a way that the modified SN calculation be-
comes ''equivalent' to a Pp solution with the game number of
unknown functions. Thus, for example, a three-ordinate set
would be required for an Sy - P; calculation. In work published
simultaneously with Reed's, Jung and his coworkers (using methods
very much like Reed's) independently developed Sy - P equations
of this sort (7), i.e. Sy - P| equations with 1/2[L(L + 1)] ordi-
nates, arranged in unsymmetric sets.

To what extent are these various Sy - P|, approximations
really equivalent to spherical harmonics approximations? The
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Reed and Jung Sy - P| equations are certainly equivalent to true
P equations at points where the cross sections are continuous.
There is, however, no obvious connection between the Rumyantsev
(8) interface conditions, generally used in P| approximations,
and the continuity conditions imposed at interfaces in most

SN - Pp codes. Thus, for example, in a P; approximation, and in
Xx-y geometry, the x current is a continuous function of x and the
y current is continuous in y; but the y current is not always
continuous in x. The y current must be discontinuous across any
interface parallel to the y axis if D is discontinuous. If D is
discontinuous, then it is impossible for a continuous scalar flux
and continuous currents to satisfy the P, equations. Yet in

Sy - Py, codes the angular fluxes are generally taken to be con-
tinuous across interfaces. The P; moments are defined to be
linear combinations of the angular fluxes, linear combinations
with constant coefficients. All moments, it would seem, must
then be continuous. .

At this time the behavior of Sy - P; solutions is not clearly
understood. It seems likely, however, that if, in an Sy - P
code, the angular fluxes are forced to be continuous, then they
will change very rapidly at interfaces so as to approximate dis-
continuous functions.” Perhaps, as the mesh widths go to zero,
the angular fluxes become discontinuous and, correspondingly, the
fictitious sources contain 6-function components. In recent work
at Los Alamos (11), Miller finds that Sy - P; currents do, in
fact, appear to satisfy the ordinary P) continuity conditions at
convergence, but that the convergence rate of the iterative com-
putational process depends strongly on the nature of the spatial
difference equations. The diamond-difference equations
explicitly force continuity of the angular fluxes at interfaces
and, when the diamond equations are used, convergence is very
slow. On the other hand, the step equations do not explicitly
force continuity: when step equations are used convergence is
achieved more quickly, though the convergence rate remains much
lower than in conventional Sy codes.

At any rate the Sy - Py, approximations are free of ray
effects (7). In a limited number (and perhaps not enough) tests
these approximations seem, in addition, to be fairly accurate.

Unfortunately the Sy - P calculations are also expensive, partly
because the additional source term converges slowly.

*

In fact Jung argues, in recent work (9), that diamond-difference
solutions of the Sy - Pp, equations converge, in the L2 norm, to
solutions of the corresponding spherical harmonics equations.

In his proof, however, it is assumed that the angular flux and
its spatial derivatives are continuous in r. Since this is not
always true (10) Jung's proof may not be valid, although his
conclusions may be correct nevertheless.
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The finite element treatment of the angular variables com-
bines, in some degree, various features of the discrete ordinate
and spherical harmonics methods. When the finite element method
is used to discretize these variables the unit sphere is, gene-
rally, subdivided into disjoint subintervals. Within each sub-
interval, the angular flux is then represented as a polynomial,
of some sort, in some function of the angles, but the flux or
its angular derivatives may be discontinuous at subinterval
boundaries. Thus, the artificial coupling between fluxes in dif-
ferent directions ought to be somewhat weaker than in the spheri-
cal harmonics approximations. On the other hand, the coupling
between angular fluxes within each subinterval should tend to
mitigate ray effects.

The finite element method has been used by Ohinishi to dis-
cretize the space (12) and angle (13) variables, separately.
Miller, Lewis and Rossow (14) discretize both the space and angle
variables simultaneously.* Ohnishi's angular basis functions are
general polynomials in the direction cosines y and n. Miller and
his colleagues use functions which are bilinear in 6 and ¢.
Ohnishi does not report numerical results in Ref. 13, but we see
in Ref. 14 that the finite element method can eliminate ray
effects in problem configurations where Sy ray effects are quite
severe.

It is clear, then, that the spherical harmonics method, and
associated partial-range polynomial expansions (like the finite
element method), have some very attractive features. But, unfor-
tuately, it is still too early to celebrate mankind's total vic-
tory over the neutron transport equations. It is important to
remember that the spherical harmonics method has not been neg-
lected for so many years simply through an oversight. Multi-
dimensional spherical harmonics computations are still expensive.
Solutions of the P; equations still converge very slowly, in
voids and small absorbing lumps, as L increases. At this point
it seems that the spherical harmonics method is appropriate only
in special situations, as an auxiliary computational technique.

Apparently at least one of the undesirable traits of the
spherical harmonics method has been inherited by the finite ele-
ment method. Because of the complicated coupling between angles
in the finite element method the finite element equations take
much more time to solve, for a given number of unknowns, than the
Sy equations. As for the accuracy of the finite element approxi-
mation (when applied to the angle variable) very little informa-
tion is available. In particular, more data must be accumulated
before one can judge the performance of the finite element method

*
For other work on phase space finite element methods see also
Refs. 15 and 16.
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in those situations where the spherical harmonics method displays
its disadvantages most conspicuously.

In differencing the transport equation it is necessary to
discretize both the angular and spatial variables. The difficul-
ties involved in differencing the angle variable have been dis-
cussed above. Ray effects are a chronic affliction of the Sy
method, brought on by conventional angle differencing techniques.
Correspondingly the standard Sy spatial difference approximations
have their own characteristic weaknesses. It is clear that the
solution of the neutron transport equation must be positive if
the source is positive. ‘For the sake of brevity we will say that
the transport equation has "positivity'". The Sy spatial differ-
ence equations, however, need not have this property. Perver-
sely, those difference equations which tend to be most accurate
(in the limit as the mesh widths approach zero) lack positivity
(17). One finds, for example, that solutions of the diamond
equations (which, when the mesh widths are small, are among the
most accurate Sy difference equations available to us) become
oscillatory, and may become negative, as the mesh widths increase.
On the other hand the step equations, which are less accurate for
small mesh widths, yield non-oscillatory, positive, fluxes when-
ever the source itself is non-oscillatory and positive.

Two different "fixup' techniques have been used in Sy codes
to suppress negative fluxes. In some codes the negative fluxes
are simply set to zero whenever they occur in the course of the
inner iterative process. In others one automatically switches
from diamond to step equations, within a mesh box, when it is
detected that the diamond equations will generate a negative
angular flux at the boundary of that box. In many respects nei-
ther technique is wholly satisfactory.

In Ref. 17, Lathrop proposed a set of difference equations
(the '"weighted-diamond' equations) intermediate in form between
the step and the diamond equations. These weighted-diamond
equations contained adjustable parameters ("weights') which con-
trolled their properties. For certain extreme values of the
weights the proposed equations degenerated completely into the
usual step and diamond equations. In practice, the parameters
were to be chosen (during execution of the Sy computation) so as
to guarantee that the weighted equations would be 'close' to the
diamond equations whenever possible but would in any case, always
yield positive fluxes.

Lathrop, however, has not continued his work on the weighted-
diamond scheme, and now prefers the set-to-zero flux fixup which
was described earlier. He argues as follows.
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In the weighted-diamond computation the weighting param-
eters are adjusted, within each mesh box, during the mesh sweep,
as soon as the fluxes entering that box are know. It is desired
that the adjusted equations be as close as possible to the dia-
mond equations (in some sense) but that they be constrained to
yield non-negative exiting fluxes. Suppose one of the diamond
equations exiting fluxes is negative. Then, by definition, an
exiting flux which is non-negative, yet is as close as possible
to that particular diamond-difference flux, must be equal to
zero. Presumably, then, an optimum choice of the weighting
parameters would produce a zero exiting flux in place of the cor-
responding, negative, diamond-difference flux. The optimum
weighted-diamond scheme would, by this argument, be equivalent
to the simple set-to-zero flux-fixup algorithm.

But, whatever the merits of this argument, a variant of the
weighted-diamond scheme recently developed by Lee (18) seems to
show some promise. Fundamentally the Lee and Lathrop weighted-
diamond equations are very similar, though Lee's method for set-
ting the adjustable parameters differs substantially from that
originally proposed by Lathrop. Lee's method is now used exten-
sively at Los Alamos, but more information on the performance of
the method is needed before it can be fully assessed. In par-
ticular, more information is needed about the accuracy of the
weighted-diamond equations, compared to the accuracy of the ordi-
nary diamond equations with their associated fixup schemes.

For the sake of brevity I shall not attempt, here, a complete
survey of recent literature on the finite element method as it
has been applied to the spatial variables. I will, however, com-
ment specifically on work by Reed and Hill (19), and by Kaper,
Leaf and Lindemann (16), since these authors have reported some
particularly interesting test results.

Reed and Hill have experimented with the finite element
method, in various forms, in a somewhat specialized triangular
mesh. They applied the finite element method only to the spatial
variable, retaining the conventional Sy treatment of the angular
variable. Within each triangle the angular flux is represented
as a polynomial. In one set of finite element approximations the
angular fluxes are forced to be continuous across triangle bound-
aries while, in another set, angular fluxes at these boundaries
are allowed to be discontinuous. An analysis of the results of
their test computations leads the authors to the following
conclusions:

(1) Errors in integrated quantities (i.e. integrated fluxes
or reaction rates) are O(h?), whatever the order of the polyno-
mial basis functions.
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(2) Errors in fluxes at points are O(h), whatever the order
of the polynomial basis functions.

(3) Oscillations in the flux, and negative fluxes, tend to
b? strongly suppressed when the flux is allowed to be discon-
tinuous at element interfaces.

Apparently the order of the error in finite element methods,
(as they are currently formulated) is limited by singularities in
the angular flux, singularities whose presence was first noted by
Arkuszewski, Julikowska and Mika (10). On the basis of their
test results Reed and Hill concluded that discontinuous ('noncon-
forming") finite element approximations are superior to confirm-
ing approximations. They have, therefore, incorporated a noncon-
forming approximation into TRIPLET (20), a triangular mesh trans-
port code recently developed at Los Alamos. It is interesting
to note that Kaper, Leaf and Lindemann (16), also,have compared
the accuracy of finite element computations with conforming and
nonconforming elements: they, also, conclude that nonconforming
elements seem to be preferable.

The finite element method may be applied to the neutron
transport equation either in its first- or second-order form.
Thus, for example, work by Ohnishi (12), and by Reed and Hill
(19), is based on the first-order form, while Miller and his col-
leagues (14), as well as Kaper, Leaf and Lindemann (16), treat
the second-order form. In a recent paper (21), Briggs, Miller
and Lewis show that, when a simple finite element method is
applied to the angular variables in the second-order form, the
resulting differential equation (in x and y) is elliptic. Since
an elliptic equation has no real characteristics, its solution
must be free of ray effects. The fact that the second-order
form generates such elliptic equations is noted also by Kaper,
Leaf and Lindemann (16); but these authors point out that ellip-
tic equations lead to boundary value problems which are, gener-
ally, more difficult to solve than initial value problems. Thus,
the finite element methods which are most effective in eliminat-
ing ray effects are also, from a practical point of view, the
most akward and inconvenient methods. It seems reasonable to
conclude, from all that has been said here, that conventional SN
codes will be with us for a very long time.

MONTE CARLO METHODS

It is not feasible to undertake, here, a complete review of
Monte Carlo methods in all their many forms. Instead we shall
sketch, very briefly, the capabilities of methods currently in
use, as well as their most serious weaknesses.
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' The advantages of the Monte Carlo method are well known.
First, it is relatively easy to put complicated cross sections,
and complicated geometric detail into Monte Carlo codes. To
treat such complications by deterministic methods is relatively
difficult. Secondly, the only significant unavoidable errors in
Monte Carlo (at least in principle) are statistical errors, and
the Monte Carlo method can itself (again, at least in principle)
provide us with estimates of these errors.

On the other hand we find that, when one fully utilizes all
the capabilities of Monte Carlo methods, Monte Carlo computations
can be quite expensive. Generally, the more information one
demands from any Monte Carlo computation, the greater the cost.
Thus, for example, while it is possible to compute Monte Carlo
fluxes in a limited number of regions, and even at a limited num-
ber of points (22), it is prohibitively expensive (by current
Monte Carlo method™ to generate a detailed plot of fluxes or
reaction rates.

Further it should be understood that Monte Carlo estimates
are often biased, and that estimates of statistical errors are
not always reliable. Monte Carlo estimates of ratios are almost
invariably biased. Eigenvalue computations are always biased
(gﬁ), and most are not (by Gast's definition (24)) '"fair games'.
In any Monte Carlo calculation where (as in shielding calcula-
tions) the sampling distributions are far from normal, it is
extremely difficult to estimate realistic error bounds. In prin-
ciple it is always possible to set conservative bounds, through
use of Tchebycheff inequality (25), if the variance of the sampl-
ing distribution is known. Unfortunately, however, when the sam-
pling distribution is badly skewed, estimates of the variance may
be totally misleading so that even the Tchebyscheff inequality is
not always helpful.

But even when one deals with distributions which are normal
the computations of error estimates is not necessarily a simple
task. Thus it is very difficult, in many cases, to produce reli-
able error estimates in eigenvalue problems, simply because sam-
ple values obtained from successive generations are correlated
(26). The degree of correlation increases with the dominance
ratio and, for example, in large thermal reactors, where the
dominance ratio may be very close to one, error estimation tech-
niques which ignore these correlations will be grossly inadequate.

*

Detailed flux plots can be obtained by conditional Monte Carlo
(23), but very little is known, at present, about the capabili-
ties and limitations of conditional Monte Carlo in neutron
transport computations.
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Unfortungtely the only methods available today for treating such
correlations have no firm theoretical foundation.

Of course Monte Carlo codes are not intended primarily for
the computation of error estimates. It is not very consoling to
knoy that an error estimate is reliable if the estimated error
is intolerably large. Statistical fluctuations are themselves
perhaps the most troublesome feature of Monte Carlo, particu-
larly in perturbation calculations. Various Monte Carlo tech-
niques have been developed specifically for the treatment of
small perturbations. One (generally attributed to Mathes (27))
involves the estimation of a bilinear functional in the fission
source and its adjoint. In order to evaluate this functional
Matthes assumes that the source and the adjoint source are flat
over prescribed regions. This is, of course, an approximation
and, unfortunately, an approximation whose accuracy is difficult
to assess. Though the Matthes method in its original form was
based on first-order perturbation theory, recent work has shown
(28) that the perturbation approximation is not an essential fea-
ture of the Matthes method. The method can be reformulated so as
to avoid perturbation theory, but unfortunately other weaknesses
in the Matthes method remain.

A second method goes by various names, but is often referred
to as ''complete correlation' (25). The method of complete corre-
lation involves the simultaneous treatment of perturbed and
unperturbed problem configurations, using a single set of his-
tories. Complete correlation is an exact method. The use of
complete correlation does not necessarily entail any special
approximation. That the method is exact seems to be its most
attractive feature, but it has its share of compensating disad-
vantages. Complete correlation is most effective when the ''per-
turbed' and ''unperturbed'' states are physically very similar. On
the other hand, it may be very ineffective when these states dif-
fer substantially. Consider, for example, two LMFBR reactors
which are identical, except in their coolant regions. Suppose
that sodium has been voided from certain coolant channels of one
reactor, while the second reactor is in its normal state. The
net change in eigenvalue caused by coolant voiding may be very
small (i.e. <<1%), but the physical properties of the voided
channels have changed drastically, Small eigenvalue changes, in-
duced by large physical changes, are difficult to compute by cor-
related sampling.

The treatment of perturbations is particularly difficult
when the perturbations are confined to small regions. Both the
Matthes method and the method of complete correlation require
that a substantial number of sample histories be tracked through
the perturbed region. But if this region is small, then, in ana-
log Monte Carlo, only a small fraction of the sample histories
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will pass through it. It is clear that, in such cases, radical
measures must be taken to enhance the density of sample neutrons
near_the perturbation. This might be done, for example, by con-
ventional roulette and splitting. It is possible that biasing
methods used by Steinberg and Kalos (22), in conjunction with
their point estimation technique, may also be invoked (in place
of splitting) to draw sample neutrons towards regions containing
perturbations. In any case, as these regions decrease in size
it becomes increasingly difficult to sense the perturbations,
and the various effects which they induce.

In fixed source calculations, reaction rates in small
regions are often computed by the adjoint method (25). Unfortu-
nately, however, it is not a simple matter to adapz—ihe adjoint
method to reactivity computations. A Monte Carlo technique which
incorporates the adjoint method into reactivity perturbation cal-
culations has recently been developed by Bernnat (29). It is to
be hoped that perturbation methods based on adjoint computations
will be further elaborated and refined in the future.

At this point the Monte Carlo method is an essential tool
of reactor analysis, essential in that it may often be feasible
when all other methods fail. Yet the state-of-the-art today is
far from satisfactory. Monte Carlo calculations are still gener-
ally very expensive. The theory of eigenvalue calculations is
still primitive. Methods used for estimating confidence inter-
vals need a good deal of improvement. Perturbation calculations
are still difficult. In many respects, it seems deterministic
methods are more highly developed and better understood than
Monte Carlo methods. Perhaps it is time for a vigorous and con-
certed effort to extend the capabilities of Monte Carlo, since
so much work on Monte Carlo remains to be done.
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